Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mar Pollut Bull ; 201: 116257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518575

RESUMO

It is generally acknowledged that microplastic pollutants are prevalent in ocean waters and sediments across a range of tropical, temperate, subpolar, and polar regions. The waters surrounding King George Island are significantly impacted by human activities, particularly those related to scientific stations, fishing, and tourism. Organisms, such as Laternula elliptica, can be used as environmental monitors due to the likelihood that they will bioaccumulate pollutants. The goal of this study was to quantify and identify plastic and cellulosic micro-fragments and microfibers present in the soft body of clams (n = 21), collected from Fildes Bay near sewage and wastewater discharges. Plastic and cellulose microfragments and microfibers were counted, and their compositions were determined using FT-IR. All 21 individuals sampled contained fragments and fibers, with a total of 900 items detected (42.86 ± 25.36 mean ± SD items per individual), or 1.82 items g.wet mass-1. 58 % of items were cellulose and 22 % plastic. Considering the plastic polymer compositions, 28.57 % were polyethylene terephthalate (PET), 21.43 % acrylic, 14.29 % high-density polyethylene (HDPE), 14.29 % Polypropylene (PP), 7.14 % ultra-high drawn polyethylene filament (UHMWPE), 7.14 % polyester and 7.14 % Polyethylene. The quantities and prevalence of MP in L. elliptica were higher than those found in other Antarctic marine species, and even in bivalves from populated regions of the world. Our work assessed the pollution status of L. elliptica near an effluent of wastewater plants and found that 95 % of individuals displayed MP and 100 % microfibers that could impact their population.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Humanos , Plásticos , Regiões Antárticas , Águas Residuárias , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polietileno , Celulose
3.
Braz J Microbiol ; 55(1): 487-497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38157148

RESUMO

The filter feeder clam Laternula elliptica is a key species in the Antarctic ecosystem. As a stenothermal benthic species, it has a poor capacity for adaptation to small temperature variations. Despite their ecological importance and sensitivity to climate change, studies on their microbiomes are lacking. The goal of this study was to characterize the bacterial communities of L. elliptica and the tissues variability of this microbiome to provide an initial insight of host-microbiota interactions. We investigated the diversity and taxonomic composition of bacterial communities of L. elliptica from five regions of the body using high-throughput 16S rRNA gene sequencing. The results showed that the microbiome of L. elliptica tended to differ from that of the surrounding seawater samples. However, there were no significant differences in the microbial composition between the body sites, and only two OTUs were present in all samples, being considered core microbiome (genus Moritella and Polaribacter). No significant differences were detected in diversity indexes among tissues (mean 626.85 for observed OTUs, 628.89 Chao1, 5.42 Shannon, and 0.87 Simpson). Rarefaction analysis revealed that most tissues reached a plateau of OTU number according to sample increase, with the exception of Siphon samples. Psychromonas and Psychrilyobacter were particularly abundant in L. elliptica whereas Fluviicola dominated seawater and siphons. Typical polar bacteria were Polaribacter, Shewanella, Colwellia, and Moritella. We detected the prevalence of pathogenic bacterial sequences, particularly in the family Arcobacteraceae, Pseudomonadaceae, and Mycoplasmataceae. The prokaryotic diversity was similar among tissues, as well as their taxonomic composition, suggesting a homogeneity of the microbiome along L. elliptica body. The Antarctic clam population can be used to monitor the impact of human activity in areas near Antarctic stations that discharge wastewater.


Assuntos
Bivalves , Microbiota , Animais , Humanos , Regiões Antárticas , RNA Ribossômico 16S/genética , Bivalves/genética , Água do Mar , Bactérias/genética
4.
Microb Ecol ; 87(1): 11, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060022

RESUMO

In understanding stress response mechanisms in fungi, cold stress has received less attention than heat stress. However, cold stress has shown its importance in various research fields. The following study examined the cold stress response of six Pseudogymnoascus spp. isolated from various biogeographical regions through a proteomic approach. In total, 2541 proteins were identified with high confidence. Gene Ontology enrichment analysis showed diversity in the cold stress response pathways for all six Pseudogymnoascus spp. isolates, with metabolic and translation-related processes being prominent in most isolates. 25.6% of the proteins with an increase in relative abundance were increased by more than 3.0-fold. There was no link between the geographical origin of the isolates and the cold stress response of Pseudogymnoascus spp. However, one Antarctic isolate, sp3, showed a distinctive cold stress response profile involving increased flavin/riboflavin biosynthesis and methane metabolism. This Antarctic isolate (sp3) was also the only one that showed decreased phospholipid metabolism in cold stress conditions. This work will improve our understanding of the mechanisms of cold stress response and adaptation in psychrotolerant soil microfungi, with specific attention to the fungal genus Pseudogymnoascus.


Assuntos
Ascomicetos , Resposta ao Choque Frio , Proteômica , Microbiologia do Solo , Solo , Regiões Antárticas , Temperatura Baixa
5.
PLoS One ; 18(10): e0287376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796854

RESUMO

The Antarctic toothfish (Dissostichus mawsoni) is the largest notothenioid species in the Southern Ocean, playing a keystone role in the trophic web as a food source for marine mammals and a top predator in deep-sea ecosystems. Most ecological knowledge on this species relies on samples from areas where direct fishing is allowed, whereas in areas closed to fishing, such as the Antarctic Peninsula (AP), there are still key ecological gaps to ensure effective conservation, especially regarding our understanding of its trophic relationships within the ecosystem. Here, we present the first comprehensive study of the feeding behavior of Antarctic toothfish caught in the northern tip of the AP, during two consecutive fishing seasons (2019/20 and 2020/21). Stomach content was analyzed according to size-classes, sex and season. Macroscopic morphological analysis was used to identify prey, whereas DNA analysis was used in highly digested prey items. Fatty acid analysis was conducted to determine the prey's nutritional composition. The diet mainly consisted of Macrouridae, Cephalopoda, Anotopteridae, and Channichthyidae. Other prey items found were crustaceans and penguin remains; however, these were rare in terms of their presence in stomach samples. Sex had no effect on diet, whereas size-class and fishing season influenced prey composition. From 27 fatty acid profiles identified, we observed two different prey groups of fishes (integrated by families Anotopteridae, Macrouridae and Channichthyidae) and cephalopods. Our results revealed a narrow range of prey items typical of a generalist predator, which probably consumes the most abundant prey. Understanding the diet and trophic relationships of Antarctic toothfish is critical for a better comprehension of its role in the benthic-demersal ecosystem of the AP, key for ecosystemic fisheries management, and relevant for understanding and predicting the effect of climate change on this species.


Assuntos
Ecossistema , Perciformes , Humanos , Animais , Ácidos Graxos , Regiões Antárticas , Dieta , Cadeia Alimentar , Mamíferos
6.
Front Physiol ; 14: 1083240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895632

RESUMO

When an organism makes a long-distance transition to a new habitat, the associated environmental change is often marked and requires physiological plasticity of larvae, juveniles, or other migrant stages. Exposing shallow-water marine bivalves (Aequiyoldia cf. eightsii) from southern South America (SSA) and the West Antarctic Peninsula (WAP) to changes in temperature and oxygen availability, we investigated changes in gene expression in a simulated colonization experiment of the shores of a new continent after crossing of the Drake Passage, and in a warming scenario in the WAP. Bivalves from SSA were cooled from 7°C (in situ) to 4°C and 2°C (future warmed WAP conditions), WAP bivalves were warmed from 1.5°C (current summer in situ) to 4°C (warmed WAP), gene expression patterns in response to thermal stress by itself and in combination with hypoxia were measured after 10 days. Our results confirm that molecular plasticity may play a vital role for local adaptation. Hypoxia had a greater effect on the transcriptome than temperature alone. The effect was further amplified when hypoxia and temperature acted as combined stressors. The WAP bivalves showed a remarkable ability to cope with short-term exposure to hypoxia by switching to a metabolic rate depression strategy and activating the alternative oxidation pathway, whilst the SSA population showed no comparable response. In SSA, the high prevalence of apoptosis-related differentially expressed genes especially under combined higher temperatures and hypoxia indicated that the SSA Aequiyoldia are operating near their physiological limits already. While the effect of temperature per se may not represent the single most effective barrier to Antarctic colonization by South American bivalves, the current distribution patterns as well as their resilience to future conditions can be better understood by looking at the synergistic effects of temperature in conjunction with short-term exposure to hypoxia.

7.
Front Microbiol ; 13: 827863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444618

RESUMO

The sponge microbiome, especially in Low Microbial Abundance (LMA) species, is expected to be influenced by the local environment; however, contrasting results exist with evidence showing that host specificity is also important, hence suggesting that the microbiome is influenced by host-specific and environmental factors. Despite sponges being important members of Southern Ocean benthic communities, their relationships with the microbial communities they host remain poorly studied. Here, we studied the spatial and temporal patterns of the microbiota associated with the ecologically important LMA sponge M. acerata at sites along ∼400 km of the Western Antarctic Peninsula (WAP) to assess patterns in the core and variable microbial components of the symbiont communities of this sponge species. The analyses of 31 samples revealed that the microbiome of M. acerata is composed of 35 prokaryotic phyla (3 Archaea, 31 Bacteria, and one unaffiliated), being mainly dominated by Proteobacteria with Gammaproteobacteria as the most dominant class. The core community was composed of six prokaryotic OTUs, with gammaproteobacterial OTU (EC94 Family), showing a mean abundance over 65% of the total abundance. Despite some differences in rare OTUs, the core community did not show clear patterns in diversity and abundance associated with specific sites/environmental conditions, confirming a low variability in community structure of this species along the WAP. The analysis at small scale (Doumer Island, Palmer Archipelago) showed no differences in space and time in the microbiome M. acerata collected at sites around the island, sampled in three consecutive years (2016-2018). Our results highlight the existence of a low spatial and temporal variability in the microbiome of M. acerata, supporting previous suggestions based on limited studies on this and other Antarctic sponges.

8.
Virology ; 560: 116-123, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058706

RESUMO

Members of the Picornaviridae family comprise a significant burden on the poultry industry, causing diseases such as gastroenteritis and hepatitis. However, with the advent of metagenomics, a number of picornaviruses have now been revealed in apparently healthy wild birds. In this study, we identified four novel viruses belonging to the family Picornaviridae in healthy Magellanic penguins, a near threatened species. All samples were subsequently screened by RT-PCR for these new viruses, and approximately 20% of the penguins were infected with at least one of these viruses. The viruses were distantly related to members of the genera Hepatovirus, Tremovirus, Gruhelivirus and Crahelvirus. Further, they had more than 60% amino acid divergence from other picornaviruses, and therefore likely constitute novel genera. Our results demonstrate the vast undersampling of wild birds for viruses, and we expect the discovery of numerous avian viruses that are related to hepatoviruses and tremoviruses in the future.


Assuntos
Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/veterinária , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Spheniscidae/virologia , Animais , Chile/epidemiologia , Espécies em Perigo de Extinção , Filogenia , Picornaviridae/genética
9.
Front Microbiol ; 10: 2699, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824467

RESUMO

Marine sponges host dense, diverse, and species-specific microbial communities around the globe; however, most of the current knowledge is restricted to species from tropical and temperate waters. Only recently, some studies have assessed the microbiome of a few Antarctic sponges; however, contrary to low mid-latitude sponges, the knowledge about temporal (stability) patterns in the bacterial communities of Antarctic sponges is absent. Here, we studied the temporal patterns of bacterial communities in the Antarctic sponges Mycale (Oxymycale) acerata, Isodictya sp., Hymeniacidon torquata, and Tedania (Tedaniopsis) wellsae that were tagged in situ and monitored during three austral summers over a 24-month period. By using amplicon sequencing of the bacterial 16S rRNA gene we found that the microbiome differed between species. In general, bacterial communities were dominated by gammaproteobacterial OTUs; however, M. acerata showed the most distinct pattern, being dominated by a single betaproteobacterial OTU. The analysis at OTU level (defined at 97% sequence similarity) showed a highly stable bacterial community through time, despite the abnormal seawater temperatures (reaching 3°C) and rates of temperature increase of 0.15°C day-1 recorded in austral summer 2017. Sponges were characterized by a small core bacterial community that accounted for a high percentage of the abundance. Overall, no consistent changes in core OTU abundance were recorded for all studied species, confirming a high temporal stability of the microbiome. In addition, predicted functional pathway profiles showed that the most abundant pathways among all sponges belonged mostly to metabolism pathway groups (e.g., amino acid, carbohydrate, energy, and nucleotide). The predicted functional pathway patterns differed among the four sponge species. However, no clear temporal differences were detected supporting what was found in terms of the relatively stable composition of the bacterial communities.

10.
PeerJ ; 7: e8088, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824760

RESUMO

Although the cellular and molecular responses to exposure to relatively high temperatures (acute thermal stress or heat shock) have been studied previously, only sparse empirical evidence of how it affects cold-water species is available. As climate change becomes more pronounced in areas such as the Western Antarctic Peninsula, both long-term and occasional acute temperature rises will impact species found there, and it has become crucial to understand the capacity of these species to respond to such thermal stress. Here, we use the Antarctic sponge Isodictya sp. to investigate how sessile organisms (particularly Porifera) can adjust to acute short-term heat stress, by exposing this species to 3 and 5 °C for 4 h, corresponding to predicted temperatures under high-end 2080 IPCC-SRES scenarios. Assembling a de novo reference transcriptome (90,188 contigs, >93.7% metazoan BUSCO genes) we have begun to discern the molecular response employed by Isodictya to adjust to heat exposure. Our initial analyses suggest that TGF-ß, ubiquitin and hedgehog cascades are involved, alongside other genes. However, the degree and type of response changed little from 3 to 5 °C in the time frame examined, suggesting that even moderate rises in temperature could cause stress at the limits of this organism's capacity. Given the importance of sponges to Antarctic ecosystems, our findings are vital for discerning the consequences of short-term increases in Antarctic ocean temperature on these and other species.

11.
PeerJ ; 6: e4935, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892508

RESUMO

Sponges belonging to genus Mycale are common and widely distributed across the oceans and represent a significant component of benthic communities in term of their biomass, which in many species is largely composed by bacteria. However, the microbial communities associated with Mycale species inhabiting different geographical areas have not been previously compared. Here, we provide the first detailed description of the microbiota of two Mycale species inhabiting the sub-Antarctic Magellan region (53°S) and the Western Antarctic Peninsula (62-64°S), two geographically distant areas (>1,300 km) with contrasting environmental conditions. The sponges Mycale (Aegogropila) magellanica and Mycale (Oxymycale) acerata are both abundant members of benthic communities in the Magellan region and in Antarctica, respectively. High throughput sequencing revealed a remarkable similarity in the microbiota of both sponge species, dominated by Proteobacteria and Bacteroidetes, with both species sharing more than 74% of the OTUs. In contrast, 16% and 10% of the OTUs were found only in either M. magellanica or M. acerata, respectively. Interestingly, despite slight differences in the relative abundance, the most dominant OTUs were present in both species, whereas the unique OTUs had very low abundances (less than 1% of the total abundance). These results show a significant overlap among the microbiota of both Mycale species and also suggest the existence of a low level of specificity of the most dominant symbiont groups.

12.
Biol Res ; 51(1): 8, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587857

RESUMO

BACKGROUND: Heat stress proteins are implicated in stabilizing and refolding denatured proteins in vertebrates and invertebrates. Members of the Hsp70 gene family comprise the cognate heat shock protein (Hsc70) and inducible heat shock protein (Hsp70). However, the cDNA sequence and the expression of Hsp70 in the Antarctic sea urchin are unknown. METHODS: We amplified and cloned a transcript sequence of 1991 bp from the Antarctic sea urchin Sterechinus neumayeri, experimentally exposed to heat stress (5  and 10 °C for 1, 24 and 48 h). RACE-PCR and qPCR were employed to determine Hsp70 gene expression, while western blot and ELISA methods were used to determine protein expression. RESULTS: The sequence obtained from S. neumayeri showed high identity with Hsp70 members. Several Hsp70 family features were identified in the deduced amino acid sequence and they indicate that the isolated Hsp70 is related to the cognate heat shock protein type. The corresponding 70 kDa protein, called Sn-Hsp70, was immune detected in the coelomocytes and the digestive tract of S. neumayeri using a monospecific polyclonal antibody. We showed that S. neumayeri do not respond to acute heat stress by up-regulation of Sn-Hsp70 at transcript and protein level. Furthermore, the Sn-Hsp70 protein expression was not induced in the digestive tract. CONCLUSIONS: Our results provide the first molecular evidence that Sn-Hsp70 is expressed constitutively and is non-induced by heat stress in S. neumayeri.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/fisiologia , Ouriços-do-Mar/metabolismo , Animais , Regiões Antárticas , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico HSP70/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/fisiologia , Regulação para Cima
13.
PeerJ ; 6: e4289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29372123

RESUMO

The Western Antarctic Peninsula (WAP) has undergone significant changes in air and seawater temperatures during the last 50 years. Although highly stenotherm Antarctic organisms are expected to be severely affected by the increase of seawater temperature, high-resolution datasets of seawater temperature within coastal areas of the WAP (where diverse marine communities have been reported) are not commonly available. Here we report on within-year (2016-2017) variation in seawater temperature at three sites on Doumer Island, Palmer Archipelago, WAP. Within a year, Antarctic organisms in South Bay were exposed to water temperatures in excess of 2 °C for more than 25 days and 2.5 °C for more than 10 days. We recorded a temperature range between -1.7° to 3.0 °C. Warming of seawater temperature was 3.75 times faster after October 2016 than it was before October. Results from this study indicate that organisms at South Bay are already exposed to temperatures that are being used in experimental studies to evaluate physiological responses to thermal stress in WAP organisms. Continuous measurements of short to long-term variability in seawater temperature provides important information for parametrizing meaningful experimental treatments that aim to assess the local effects of environmental variation on Antarctic organisms under future climate scenarios.

14.
Biol. Res ; 51: 8, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-888433

RESUMO

Abstract Background: Heat stress proteins are implicated in stabilizing and refolding denatured proteins in vertebrates and invertebrates. Members of the Hsp70 gene family comprise the cognate heat shock protein (Hsc70) and inducible heat shock protein (Hsp70). However, the cDNA sequence and the expression of Hsp70 in the Antarctic sea urchin are unknown. Methods: We amplified and cloned a transcript sequence of 1991 bp from the Antarctic sea urchin Sterechinus neumayeri, experimentally exposed to heat stress (5 and 10 °C for 1, 24 and 48 h). RACE-PCR and qPCR were employed to determine Hsp70 gene expression, while western blot and ELISA methods were used to determine protein expression. Results: The sequence obtained from S. neumayeri showed high identity with Hsp70 members. Several Hsp70 family features were identified in the deduced amino acid sequence and they indicate that the isolated Hsp70 is related to the cognate heat shock protein type. The corresponding 70 kDa protein, called Sn-Hsp70, was immune detected in the coelomocytes and the digestive tract of S. neumayeri using a monospecific polyclonal antibody. We showed that S. neumayeri do not respond to acute heat stress by up-regulation of Sn-Hsp70 at transcript and protein level. Furthermore, the Sn-Hsp70 protein expression was not induced in the digestive tract. Conclusions: Our results provide the first molecular evidence that Sn-Hsp70 is expressed constitutively and is noninduced by heat stress in S. neumayeri.


Assuntos
Animais , Ouriços-do-Mar/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/fisiologia , Filogenia , Estresse Fisiológico/fisiologia , Regulação para Cima , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico HSP70/genética , Reação em Cadeia da Polimerase em Tempo Real , Regiões Antárticas
15.
Gen Comp Endocrinol ; 252: 60-78, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28728885

RESUMO

As part of the study of the resilience of Antarctic crustaceans to global warming, the shrimp Chorismus antarcticus was subjected to an analysis of global approach using the Next Generation Sequencing Illumina Hi-Seq platform. With this data a detailed study into the principal neuropeptides and neurohormones of this species have been undertaken. Total RNAs from whole animals were enriched with eyestalk extracts to ensure maximum sequencing depth of the different neurohormones and neuropeptides mainly expressed into the X organ-sinus gland complex, which is a major endocrine organ of their synthesis. Apart from the information that can provide the availability of the transcriptome of a polar crustacean, the study of neuropeptides of a caridean shrimp will partially fill the limited data available for this taxon. Illumina sequencing was used to produce a transcriptome of the polar shrimp. Analysis of the Trinity assembled contigs produced 55 pre-pro-peptides, coding for 111 neuropeptides belonging to the following families: adipokinetic-corazonin-like peptide, Allatostatins (A, B et C), Bursicon (α), CCHamide, Crustacean Hyperglycemic Hormones (CHH), Crustacean Cardioactive Peptide (CCAP), Corazonin, Crustacean Female Sex Hormone (CSFH), Diuretic Hormones 31 and 45 (DH), Eclosion Hormone (EH), FLRFamide, GSEFLamide, Intocin, Ion Transport Peptide-like (ITP-like), Leucokinin, Molt-inhibiting Hormone, Myosuppresin, Neuroparsin, Neuropeptide F (NPF), Orcokinin, Orcomyotropin, Pigment Dispersing Hormone (PDH), Pyrokinin, Red Pigment Concentrating Hormone (RPCH), SIFamide, small Neuropeptide F (sNPF), Sulfakinin and finally Tachykinin Related peptides. Among the new peptides highlighted in this study, the focus was placed on the peptides of the CHH family and more particularly on a new ITP-like in order to confirm its belonging to a new group of peptides of the family. A phylogeny made from more than 200 sequences of peptides, included new sequences from new species besides Chorismus antarcticus, confirms the peculiarity of this new set of peptides gathered under the name ITP-like.


Assuntos
Decápodes/metabolismo , Neuropeptídeos/metabolismo , Oceanos e Mares , Proteoma/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Animais , Regiões Antárticas , Neuropeptídeos/química , Filogenia , Alinhamento de Sequência , Análise de Sequência de RNA
16.
Rev. biol. trop ; 63(supl.2): 309-320, Apr.-Jun. 2015. tab, graf
Artigo em Inglês | LILACS, SaludCR | ID: biblio-958178

RESUMO

Abstract In the Antarctic marine environment, the water temperature is usually between 2 and - 1.9 °C. Consequently, some Antarctic species have lost the capacity to adapt to sudden changes in temperature. The study of the immune response in Antarctic sea urchin (Sterechinus neumayeri) could help us understand the future impacts of global warming on endemic animals in the Antarctic Peninsula. In this study, the Antarctic sea urchins were challenged with lipopolysaccharides and Vibrio alginolitycus. The cellular response was evaluated by the number of coelomocytes and phagocytosis. A significant increase was observed in red sphere cells and total coelomocytes in animals exposed to LPS. A significant rise in phagocytosis in animals stimulated by LPS was also evidenced. Moreover, the gene expression of three immune related genes was measured by qPCR, showing a rapid increase in their expression levels. By contrast, these immune genes showed a depression in their expression by a thermal effect at 5 and 10 °C. In addition, during bacterial injection, the oxygen consumption was higher in challenged animals. Our results showed that the immune response in the Antarctic sea urchin may be affected by acute thermal stress and that this immune response has a metabolic cost. Rev. Biol. Trop. 63 (Suppl. 2): 309-320. Epub 2015 June 01.


Resumen En el medio ambiente de la Antártica la temperatura del agua es de entre 2 y - 1.9 °C. Por consecuencia ciertas especies han perdido la capacidad de adaptarse a los cambios repentinos de la temperatura del agua. El estudio de la respuesta inmune del erizo antártico (Sterechinus neumayeri) podría ayudar a comprender los futuros impactos en los animales endémicos del cambio climático en la Península Antártica. En este estudio nosotros hemos evaluado la respuesta inmunitaria de S. neumayeri respecto de estimulaciones con bacterias (Lipopolisacáridos y Vibrio alginolitycus) asi como durante el estrés térmico a 5 y 10 °C. La respuesta del erizo fue evaluada en relación al número de celomocitos circulantes, capacidad fagocítica de estos y por el análisis de la expresión de tres genes inmunitarios. Después de la estimulación con LPS un aumento significativo de células esferoidales rojas, de amebocitos fagocíticos y de celomocitos totales fue observado después de las primeras horas de estimulación, de la misma manera que la capacidad fagocítica. Por otra parte los tres genes inmunes medidos mostraron un aumento significativo de su expresión por qPCR después de la estimulación con LPS. El estrés térmico de 5 °C produjo un aumento de la expresión de estos tres genes inmunitarios, por el contrario a una temperatura más alta (10 °C) se produce la reducción de dos de entre ellos. Adicionalmente un aumento del consumo de oxígeno fue observado durante la estimulación bacteriana. Nuestros resultados muestran que la respuesta inmunitaria en el erizo antártico puede ser afectada por el estrés térmico agudo y que la respuesta inmune en invertebrados antárticos tendría un costo metabólico.


Assuntos
Animais , Ouriços-do-Mar/imunologia , Equinodermos/imunologia , Receptores de Lipopolissacarídeos , Regiões Antárticas
17.
Electron. j. biotechnol ; 17(1): 1-1, Jan. 2014. ilus, tab
Artigo em Inglês | LILACS | ID: lil-706515

RESUMO

Background The increment of resistant strains to commonly used antibiotics in clinical practices places in evidence the urgent need to search for new compounds with antibacterial activity. The adaptations that Antarctic microorganisms have developed, due to the extreme environment that they inhabit, promote them as a potential new source of active compounds for the control of microorganisms causing infections associated with health care. The aim of this study was to evaluate the antibacterial activity of an ethanol extract of the Antarctic bacterium Janthinobacterium sp., strain SMN 33.6, against nosocomial multi-resistant Gram-negative bacteria. Results Inhibitory activity against human Gram-negative bacterial pathogens, with concentrations that varied between 0.5 and 16 µg ml- 1, was demonstrated. Conclusions The ethanolic extract of Janthinobacterium sp. SMN 33.6 possesses antibacterial activity against a chromosomal AmpC beta-lactamase-producing strain of Serratia marcescens, an extended-spectrum beta-lactamase-producing Escherichia coli and also against carbapenemase-producing strains of Acinetobacter baumannii and Pseudomonas aeruginosa. This becomes a potential and interesting biotechnological tool for the control of bacteria with multi-resistance to commonly used antibiotics.


Assuntos
Oxalobacteraceae/química , Bactérias Gram-Negativas/efeitos dos fármacos , Antibacterianos/farmacologia , Filogenia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/metabolismo , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana , Genes de RNAr/genética , Farmacorresistência Bacteriana , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Oxalobacteraceae/genética , Etanol/química , Bactérias Gram-Negativas/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...